
Machine Learning in Hedge Fund Classication: Systematic vs.

Discretionary Strategies and Their Performance Implications

Hui-Ching Chuang, Chung-Ming Kuan

Department of Statistics, National Taipei University

Department of Finance, National Taiwan University

Abstract

This paper ne-tuned the FinBERT, a large language model (LLM) tailored for the nancial

domain, to classify hedge funds into Systematic and Discretionary categories. By leveraging LLM

techniques, our approach mitigates the subjective judgment traditionally involved in categorizing

investment strategies. We nd that on average, funds classied as Systematic yield higher factor-

adjusted returns than their Discretionary counterparts. Moreover, after implementing test with

a false discovery adjustment, we observe that between 10% to 20% of funds exhibit statistically

signicant positive alphas in models combining of observable and unobservable factors.
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1. Introduction

Investment strategies are complex decision processes involving quantitative and qualitative

market information assessments. Such strategies play a crucial role in hedge fund performance.

A funds investment strategy is usually disclosed in its private placement memorandum or fund

prospectus. Fund managers tend to avoid specic descriptions of their strategies to permit in-

vestment exibility. As such, it is not straightforward to categorize hedge funds based on their

disclosed statements. On the other hand, the Hedge Fund Research (HFR) database oers its

fund classication systems; for example, HFR strategy classication in 2017 includes ve major

categories: Equity Hedge, Event-Driven, Macro, Relative Value and Fund of Funds, each with

several sub-strategy groups. While the HFR classication provides valuable information about the

fund characteristics, much eort is still needed if one would like to categorize hedge funds under

dierent criteria.

With the advancement of analytical tools and computational technology, more fund managers

now rely on models, algorithms, and various learning methods to make investment decisions. Thus,

it would be interesting to classify hedge funds into systematic and discretionary funds and

study how these two groups of funds perform in practice. By systematic funds, we refer to the

funds with strategies depending mainly on quantitative models without human intervention by

discretionary funds we refer to those require primarily managers professional skills and experi-

ence. Such classication is also in line with the HFR categorization for the sub-categories of Macro

funds: Systematic Diversied funds and Discretionary Thematic funds.1 Similarly, hedge/mutual

funds are classied as man and machine in Harvey et al. (2017) and quantitative and dis-

cretionary (non-quantitative) in Abis (2022) (Beggs and Hill-Kleespie, 2025), or quantitative

and fundamental in Evans, Rohleder, Tentesch and Wilkens (2023).

In this paper, we introduce an approach for building classiers that bifurcate hedge funds into

systematic and discretionary categories, leveraging the large language model (LLM). Specically,

we extract features from Systematic Diversied and Discretionary Thematic hedge funds to con-

struct a training sample, and ne-tune FinBERT, a BERT-based model tailored for the nancial

1HFR denes Systematic Diversied funds as funds with investment processes that typically are functions
of mathematical, algorithmic and technical models, with little or no inuence from individuals over the portfolio
positioning, and Discretionary Thematic funds are those primarily reliant on the evaluation of market data, re-
lationships, and inuences, as interpreted by an individual or group of individuals who make decisions on portfolio
positions.
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domain, to accommodate the content of fund strategy descriptions. BERT (Bidirectional Encoder

Representations from Transformers), proposed by Devlin et al. (2019), learns contextual informa-

tion from both the left and right sides of a word, and is pre-trained on a large general corpus

including Wikipedia and BookCorpus. FinBERT, developed by Yang et al. (2020) and Huang

et al. (2023), further train the model on SEC corporate lings (10-K and 10-Q), nancial analyst

reports from Thomson Investext, and earnings call transcripts from SeekingAlpha. As a result,

FinBERT captures contextual nuances in nancial texts than the original BERT model. Our clas-

sier architecture is based on FinBERT, with a classication head added to distinguish hedge fund

styles. The resulting model eectively leverages nancial language understanding to dierentiate

between systematic and discretionary strategies. Our classication task is similar to that applied

by Abis (2022), Beggs and Hill-Kleespie (2025), and Harvey et al. (2017), diering mainly in that

we rely on guidance from HFRs internal expert classication as training labels and do not require

selecting keywords to label the funds.

We evaluate fund performance using the FDR-based test proposed by Giglio et al. (2021) to

test multiple alphas in the linear asset pricing models. We then compare whether positive alpha

funds (we use outperforming funds for positive alpha funds interchangeably) belong to the system-

atic funds (or discretionary funds) and the magnitude of their performance dierence. Examining

the positiveness of thousands of individual funds alpha is a multiple-testing question. Multiple

testing is easy to suer from the data-snooping bias, i.e., we are likely to identify the outperform-

ing funds purely due to chance. The false discovery fallacy is critical when searching for positive

alpha funds. Benjamini and Hochberg (1995) (BH) are pioneers proposing the test to examine

the multiple hypotheses while controlling the false discovery rate (FDR), which is dened as the

expected value of the false rejected number to the rejected number of the hypotheses. FDR and

related multiple testing approaches have attracted more and more nance researchers recently, see,

e.g., Harvey et al. (2020), Chordia et al. (2020), Hsu et al. (2024) and others.2

Under the conventional Fama-MacBeth two-pass regression framework, Giglio et al. (2021)

propose a rigorous multiple-test framework that accommodates missing data and omitted risk

2Barras et al. (2010), Cuthbertson et al. (2012), Bajgrowicz and Scaillet (2012), Bajgrowicz et al. (2016) use the
Bayesian FDR control test. Another strand of literature focuses on controlling the family-wise error rate (FWER),
which is the probability of committing more than one false discovery, see White (2000), Hansen (2005), Romano
and Wolf (2005), and Hsu and Kuan (2005). The applications of FWER control include the protability of trading
strategies: Kuang et al. (2014), Goyal and Wahal (2015). Harvey et al. (2016) and Chordia et al. (2020) also promote
the FDP, false discovery proportion introduced in Romano and Wolf (2007), and Romano et al. (2008).
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factors. Hedge fund data is known for its short life span (unbalanced panel return structure, missing

values), herding trade (cross-sectional dependence), and highly nonlinear payo structures (possibly

the existence of latent risk factors). These characteristics and the generated variable bias from the

two-pass procedure threaten the underlying independence assumptions of Benjamini and Hochberg

(1995) test. Giglio et al. (2021) propose the adjustment to the conventional two-pass methods and

FDR test, which mitigate those issues threat to the validity of BH test and further improve the

power of the test while maintaining the FDR control.

Our classication task includes the two sub-strategies of the Macro fund (training sample) and

four sub-strategies of the Equity Hedge funds (testing sample) in the HFR database. We ne-tuning

the FinBERT model to 85% of the training and validation sample and compare the prediction

results on the 15% hold out samples with respect to various bag-of-words based machine learning

approaches. Results show that the FinBERT model has the highest hold-out sample prediction

ability, yields as high as 93% , 96%, 92%, and 95% in terms of accuracy, area under the ROC

curve, precision, and F1 scores.

We study the performance of those classied funds surviving at least 36 months from 1994 to

2015. We nd that systematic funds have higher Sharpe ratios and factor-adjusted alphas than

those classied as discretionary. These results hold for all four sub-strategies of the Equity Hedge

funds and are robust to one, three, ve, and seven risk factor models. The FDR-based multiple

alphas test shows that there are 10% to 20% statistically signicant positive alpha funds in both

catogories.

Our research makes several contributions to the literature. First, we propose a novel approach to

classify the style of hedge fund investing strategies. The quantitative (non-quantitative) investment

style of funds draws the researchers attention to its impact on the market liquidity, tail risk, the

economy of scale, and others (Abis, 2022; Evans et al., 2023). Our ne-tuned FinBERT approach

helps extract the textual information from the funds with well-dened classication styles and

predict the less clearly dened styles of funds. It reduces researcher-dependent judgment eort

while keeping the classication consistent with well-dened styles.

Second, we identify the proportion of the authentic outperforming funds in systematic and

discretionary funds using the test without data-snooping bias. Our results add to the research of

Giglio et al. (2021) on the performance of Hedge funds style investment and also give rigorous
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statistical evidence on the protability of the systematic and discretionary funds in addition to

Chincarini (2014), and Harvey et al. (2017).

Third, we show that ne-tuning a content-specic LLM using fund prospectuses achieves high

classication performance. Domain-specic LLMs have demonstrated strong performance in areas

such as science and biomedicine (Beltagy et al., 2019; Lee et al., 2020), legal studies (Chalkidis

et al., 2020), ESG research (Huang et al., 2023; Webersinke et al., 2021), and innovation studies

(Lee and Hsiang, 2020; Chuang et al., 2023). Our analysis extends this promising line of work by

showing that LLMs can automatically assign hedge fund styles, helping to decode the potentially

complex strategies employed across the fund industry.

This paper proceeds as follows. Section 2 discusses the methods for extracting features from

fund strategy descriptions and for building fund classiers from these features. In Section 3, we

evaluate the performance of the classied systematic and discretionary funds and compare their

overall performance via FDR tests. The last section concludes the paper.

2. Classication of Hedge Funds

In this section, we discuss our approach to ne-tuning FinBERT to classify systematic and

discretionary funds, based on the documents of fund investment strategies. Following Harvey et al.

(2017), we consider the two largest groups in the HFR classication system: Macro funds and

Equity Hedge funds, where the former includes two sub-strategy groups (Systematic Diversied

funds and Discretionary Thematic funds), and the latter contains four sub-strategy groups (Equity

Market Neutral funds, Fundamental Growth funds, Fundamental Value funds, and Quantitative

Directional funds).3 Given that Macro funds have already been classied into systematic and

discretionary funds, it is quite natural to use the information of Macro funds to train classiers.

All strategy descriptions are sourced from the HFR database; we include the graveyard database

to mitigate survivorship bias. In total, we collect 2,242 Macro-fund strategy descriptions: 1,479

classied as systematic and 763 as discretionary.

Fine-tuning the FinBERT model of Yang et al. (2020); Huang et al. (2023) proceeds in three

stages: tokenization and embedding, transformer encoding and pooling, and the nal classication

step. Tokenization converts raw text into a sequence of token IDs based on FinVocab, inserts

3As Harvey et al. (2017), we ignore sector-specic funds and those with multistrategy.
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special tokens ([CLS] at the start and [SEP] to separate sentences), and pads or truncates to a

xed length of 512 tokens.4 Each token ID is then mapped to a 1×768 token embeddings vector (a

vector of real numbers to be estimated), capturing both semantics and position information in the

sequence.

The second stage, transformer encoding and pooling, renes the initial token embeddings by

incorporating contextual information from the entire input sequence and outputs a representative

vector. Specically, the 512 × 768 token embedding matrix is fed into a 12-layer, bidirectional

BERTBASE Transformer encoder (encoder comprises weight matrices to be estimated). At each

layer, the self-attention mechanism acts as an adaptive weighting scheme, updating each tokens

(latent) factor loadings based on its association with all other tokens in both its left and right

context (see Vaswani et al. (2017)). After twelve iterations, the encoder yields 768-dimensional

loadings, or termed transformer embeddings, one per token (including the special [CLS] token).

Finally, a pooling layer applies a linear transformation and a Tanh activation function to the [CLS]

vector, yielding a single 768-dimensional summary representation of the raw text, which serves as

the input to the nal classication task.

The nal classication stage applies a linear transformation to the summary vector, yielding

two-dimension logits. (i.e., by multiplying the summary vector by a 2 × 768 weight matrix plus

2-vector constant). A softmax function converts these logits into the predicted probabilities for

two fund styles.

In our training process, we withheld 15% of the Macro strategy descriptions (337) as a hold-out

test set. From the remaining 85%, we reserved 15% (286) for validation to monitor model perfor-

mance during training, leaving 1,619 descriptions for training. To maintain the original 65.97%

systematic–discretionary ratio, we employed stratied sampling. The pre-trained FinBERT model

is loaded from the Hugging Face platform,5 We then ne-tuned all model parameters using our

strategy descriptions of the training sample. Detailed hyper-parameter settings in the training

4Tokens may represent words, subwords, or mixture with punctuation. For example, the sentence ”Fine-tuning the
FinBERT model rocks.” is split into WordPiece tokens [’fine’, ’-’, ’tuni’, ’##ng’, ’the’, ’fin’, ’##bert’,

’model’, ’rock’, ’##s’, ’.’] with corresponding token IDs [3, 4882, 30861, 16256, 1071, 6, 3388, 16909,

674, 5102, 63]. FinVocab is the list of nancial-related tokens comprising 30,873 case-insensitive entries, each
occurring at least 8,500 times in a corpus of: (i) 2.5 billion tokens from Russell 3000 rms Form 10-K/10-Q l-
ings (business descriptions, risk factors, MD&A, 1994–2019); (ii) 1.1 billion tokens from S&P 500 analyst reports
(2003–2012); and (iii) 1.3 billion tokens from earnings-call transcripts of 7,740 public rms (2004–2019). Two special
tokens, [CLS], denoting the beginning and [SEP] to separate the sentence pair are inserted into the token list.

5The model is listed on https://huggingface.co/yiyanghkust/finbert-pretrain
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architecture, and epoch (training rounds) performance are provided in Appendix A.

Our classication performance is listed in Table 1. We show classication performance metrics

for train, validation, and test samples using the ne-tuned FinBERT model. Results show that our

fund-strategy-ne-tuned FinBERT model has high hold-out sample prediction ability, yields as high

as 93%, 96%, 92%, and 95%, 97% in terms of accuracy, AUC, precision, F1, and recall scores. These

scores are generally higher than those obtained from standard machine learning methods, with

improvements ranging from 1 to 10 percentage points. To provide additional context, Appendix

A.II outlines the methodological details and performance results of several bag-of-words-based

classiers.6

Figure 1 illustrates the distribution and decile breakdown of predicted probabilities for funds

classied under the Macro strategy. The upper panel overlaid a histogram of predicted probabilities

with a kernel density estimate. The bimodal shape indicates strong model condence, with most

funds assigned probabilities close to either 0 or 1. The lower panel groups Macro funds into ten

deciles based on their predicted probabilities. Within each decile, we compute the proportion of

funds labeled as Systematic Diversied or Discretionary Thematic, following the visualization style

of Brachtendorf et al. (2023). The diverging bar plot reveals clear alignment between predicted

probabilities and true labels: Discretionary funds dominate the lower deciles, while Systematic

funds concentrate on the upper ones. Notably, only a limited number of funds fall within the

intermediate range (roughly between the 0.47 and 0.93 decile groups), where model predictions are

less decisive. Overall, Figure 1 demonstrates that the predicted probabilities eectively bifurcate

Macro funds along their actual strategy types.

We then extend the ne-tuned FinBERT model to classify Equity Hedge funds. To interpret

classication outcomes, we construct ranked bigram tables (two consecutive words) ranked table for

both Macro and Equity Hedge funds, grouped by predicted style. Table 2 shows the most frequent

bigrams associated with each predicted style within the two strategy categories. To enhance the

informativeness, we remove globally common phrases (top 5%) and apply a standard set of text

preprocessing procedures: lowercasing, stopword and punctuation removal, Porter stemming, and

part-of-speech ltering to retain only nouns and proper nouns. Figure 2 visualizes these results as

6Due to slight dierences in sample construction between the bag-of-words ML classiers and the FinBERT
ne-tuning setup (align the bi-grams used in both main strategies, remove punctuations, etc.,), the results presented
in the Appendix are not intended to be directly comparable.
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word clouds.

Across both Macro and Equity Hedge funds, predicted Systematic strategies exhibit recurring

technical terms such as algorithm, model, and comput, reecting their rules-based approach. In

contrast, predicted Discretionary funds are characterized by terms related as market, report, and

research. These lexical distinctions arm that our model captures meaningful semantic dierences

between systematic and discretionary fund strategies.

3. Comparison of Fund Performance

We assess the performance of these funds by comparing their excess returns, Sharpe ratios,

and alphas derived from various factor models and across the dierent categorized groups. In line

with prior studies on hedge funds, our analysis is limited to funds that report monthly returns and

adopt the Net of All Fees reporting style, and delete the rst 12 return observation to avoid the

back-lled biasas, seen in Cao et al. (2013). Furthermore, we narrowed our dataset to include only

those funds with at least 36 consecutive monthly returns to ensure robust regression outcomes.

The nal dataset for our performance evaluation consists of 3,905 Equity Hedge funds and 1,129

Macro funds from January 1994 to November 2015.

3.1. Performance Based on Excess Returns and Alphas

We consider the following factor model:

E(ri) = αi + β′
iλ, i = 1, · · · , N, (1)

where ri is the excess return of fund i (excess of the risk-free rate), αi is the pricing error (alpha)

of fund i, βi is the S× 1 vector of risk exposures to S risk factors, and λ is the S× 1 vector factor

risk premia (reward for risk exposure), and N is the number of funds; see, e.g., Cochrane (2009).

A fund is considered superior if its alpha is greater than zero, suggesting positive abnormal return.

In this study, we opted for models with 1, 3, 5, 7, and 11 factors, denoted as F1,F3,F5, F7,

and F11, respectively. For the 1-factor model, the only risk factor considered is the market factor

(MKT), calculated as the value-weighted return of all CRSP rms in excess of the risk-free rate.

For the 3-factor model, the risk factors include MKT, SMB (small minus big), and HML (high

minus low). SMB and HML represent size and book-to-market equity mimicking portfolios in stock
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returns, as dened by Fama and French. For the 5-factor model, according to Fung and Hsieh (2001,

2004)Fung and Hsieh (2001, 2004), the risk factors are PTFSBD, PTFSFX, PTFSCOM, PTFSIR,

and PTFSSTK. These factors represent the returns from the long position of the lookback straddle

of bonds, currencies, commodities, short-term interest rates, and stocks. Finally, for the 7-factor

model, we consider MKT, SMB, CS (credit spread), ∆10Y, PTFSBD, PTFSFX, and PTFSCOM

as risk factors. CS is the monthly change in the dierence between a BAA bond yield and a 10-year

constant maturity Treasury yield (GS10). ∆10Y represents the long-term interest rate, specically

the monthly change of GS10. The 11-factor model adds additional four factors to the 7-factor

model: HML, MOM, PTFSIR, and PTFSSTK, where MOM is the momentum factor of Carhart

(1997).7 Simple time series regression for each funds are performed to obtained the intercept as

fund alpha.

Table 3 summaries excess-return moments, Sharpe ratios, skewness, and kurtosis for the full

fund sample, the two main strategy: Equity Hedge and Macro; and the four Equity Hedge

sub-strategies, all separated by the Discretionary and Systematic styles predicted by our ne-tuned

FinBERT classier. The sample tilts toward Discretionary funds overall (3,066 versus 1,968 Sys-

tematic); the same pattern holds within Equity Hedge (2,728 versus 1,177) but reverses in Macro

(338 versus 791). Although mean excess returns are nearly identical across styles—45.6% for

Discretionary and 45.0% for Systematic—their distributions dier markedly: Discretionary funds

display wider cross-sectional dispersion and noticeably fatter tails, as reected in higher standard

deviations, more negative skewness, and greater kurtosis. These contrasts are strongest in the

Quantitative Directional segment, where FinBERT classies 89 funds as Discretionary and 171 as

Systematic, highlighting the models ability to separate judgement-driven from algorithmic trad-

ing.8 Figure 3 depicts the excess-return and Sharpe-ratio distributions for Macro and Equity Hedge

funds. In concert with Table 3, the gure demonstrates that, while average performance is broadly

comparable across styles, Discretionary and Systematic funds dier markedly in volatility, skew-

ness, and tail behavior.

7Risk-free rate and factors MKT, SMB, and HML are sourced from Kenneth R. Frenchs website. The ve hedge
fund factors can be found on Professor David A. Hsiehs website: http://faculty.fuqua.duke.edu/~dah7. Data
for BAA and GS10 are available through the Federal Reserve Economic Data of the Federal Reserve Bank of St.
Louis. Table A.2 in the appendix summarizes the risk factors means, medians, standard deviations, minimums, and
maximums and risk factors correlation matrix.

8Quantitative Directional strategies, by design, exploit statistical and factor models to extract predictive patterns
from historical prices, an approach consistent with the stronger systematic representation.
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To control for market-wide and style-specic risk factors, Table 4 next reports the distribution

of alpha estimates for Systematic versus Discretionary funds—by main and sub-strategy—using the

1-, 3-, 5-, 7-, and 11-factor models, together with the associated mean dierences. After adjusting

for factor exposures, the performance gap between systematic and discretionary styles generally

widens. Equity Hedge systematic strategies deliver alphas that exceed their discretionary peers by

approximately 5.4 pp under the market model (F1), 6.3 pp under the Fama–French three-factor

model (F3), 7.3 pp under the seven-factor model (F7), and 5.0 pp under the eleven-factor model

(F11); the sole exception is the Fung–Hsieh ve-factor model (F5), where systematic funds un-

derperform by about 0.9 pp. Macro systematic funds demonstrate even larger alpha advantages

outperforming discretionary by roughly 24.1 pp in F1, 21.2 pp in F3, 31.5 pp in F5, 27.0 pp in

F7, and 25.9 pp in F11, underscoring the robust excess returns captured by systematic approaches

once factor risks are accounted for.

Table 5 shows that Systematic funds outperform Discretionary peers in three of the four Equity

Hedge sub-strategies, Equity Value, Fundamental Growth and Fundamental Value, by roughly 4

to 8 pp of alpha across factor models (peaking under the eleven-factor specication). The biggest

gap is in Quantitative Directional, where Systematic strategies outperform Discretionary by over

10–19 pp, underscoring the alpha-generating power of statistical directional trading once common

risks are removed.

3.2. Signicant Performance under False Discovery Rate Control

In addition to comparing the factor returns, we also delve into the statistical signicance of

each funds performance. To achieve this, we formulate the following multiple hypotheses:

H0,i : αi ≤ 0, i = 1, · · · , N. (2)

Refuting the null hypothesis H0,i implies that the superior performance (positive alpha) of fund i

is statistically signicant and cannot merely be attributed to chance. Instead, it may indicate the

fund managers genuine investment acumen.

We used the test from Giglio et al. (2021) to identify funds with positive alpha in each category.

The test by Giglio et al. (2021) includes several steps. First, they use observable risk factors to

calculate risk exposures and residuals for each fund through time-series regression. Second, they
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employ matrix completion on the unbalanced residual matrix, Hastie et al. (2015), and use PCA

to identify latent risk factors and exposures. Then, they perform a cross-sectional regression of

the mean excess return on the concatenated observed and unobserved exposures to estimate risk

premiums and fund alphas. To account for potential estimation errors in alpha, the alpha estimates

are debiased before applying the alpha-screening B-H test, a power-enhanced version of the original

B-H test that accounts for inequality in hypotheses. Detailed information on the alpha estimation

algorithm and alpha-screening B-H test can be found in Append A.III.9

Table 6 displays the ratio of rejected hypotheses (i.e., funds with positive alpha) to the total

number of hedge funds, categorized accordingly. The FDR is maintained below the 5% level.

Columns (3) to (6) represent results from observable 3-, 5-, 7-, and 11-factor models, referred to

as Fs models where s equals 3, 5, and 7. Columns (7) and (8) combine a 7-factor model with 4-,

2-unobservable factors to 3 and 5 observables, respectively, labeled as F3+U4 and F5+U2. The

nal column consider pure unobservable factor models with 7 factors, denoted as U7. Panel A

outlines the proportion of positive alpha funds within discretionary or systematic funds across all

funds, and Panel B lists results on Macro and Equity Hedge, while Panel C focuses on the four

sub-strategies of Equity Hedge funds. The proportion of positive alpha is dened as the signicant

number within each classied style as main or sub-strategy considered. For example, considering

the F3 model in column (3) in Panel A, 21.33% refers to there are 21.33% of all 3,066 classied

Discretionary funds F3 alpha is positive signicantly, and 20.12% of all 1,177 classied Systematic

funds F3 alpha is positive signicantly.

Results in Table 6 highlight distinct style eects at the strategy level. In Panel A, the overall

share of signicant alphas is slightly lower or comparable for Systematic funds (20.12% in F3,

14.43% in F5, and 18.70% in F7) versus Discretionary funds (21.33% in F3, 14.12% in F5, and

22.02% in F7). When broken down by main strategy in Panel B, a more nuanced pattern emerges:

within Equity Hedge, Systematic funds lead (24.55% vs. 22.84% in F7), whereas in Macro, Discre-

tionary funds prevail (15.38% vs. 9.99% in F7). These results also holds for F11 and mixture of

F3+U4, F5+U2, and U7 factor models. These results indicate that the Systematic style excels in

Equity Hedge, whereas the Discretionary style yields more signicant positive alphas in Macro.

9The alpha-screening FDR test was conducted using a program developed by Giglio et al. (2021), available at
https://dachxiu.chicagobooth.edu/.
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4. Conclusions

This paper studies hedge fund classication and performance and contributes to the hedge

fund literature. First, we introduce a large language model approach, ne-tuning FinBERT, to

classifying hedge funds into systematic and discretionary funds that dier from existing methods.

Second, we use the false discovery control test to examine whether factor-adjusted returns (alphas)

of the classied Systematic and Discretionary funds performance. Our empirical results show that

Systematic funds are preferred to Discretionary funds across all categories of funds we considered

in terms of factor adjusted returns (alphas). We identify 10% to 20% of the authentic positive

alpha funds while controlling for the multiple test bias.
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Figure 1: Distribution and decile breakdown of predicted probability within Macro strategy. The upper panel
presents the kernel density estimate of the predicted probability of Systematic, and the lower panel shows the
relative proportions of systematic and discretionary funds across each predicted decile group.
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Figure 2: Predicted style and bigram-cloud. This plot presents the top-ranked bigrams (two consecutive words)
extracted from strategy descriptions for each predicted style within the Equity Hedge and Macro categories. Bigrams
are selected based on frequency after excluding globally common phrases (top 5%), and applying text preprocessing
steps including lowercasing, stopword and punctuation removal, Porter stemming, and part-of-speech ltering to
retain only nouns and proper nouns.

(a) Equity Hedge: Discretionary (b) Equity Hedge: Systematic

(c) Macro: Discretionary (d) Macro: Systematic
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Figure 3: Style, excess returns, and Sharpe ratios: 1994-2015.
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Table 1: Classication performance measures

Accuracy AUC Precision F1 Recall

Training 93.14% 97.55% 92.38% 94.95% 97.66%
Validation 89.16% 93.47% 89.90% 91.99% 94.18%
Test 92.58% 96.16% 91.91% 94.53% 97.30%

This table reports the classication performance of the ne-tuned FinBERT
model. The model is based on the pretrained model by Huang et al. (2023)
and ne-tuned on a stratied Macro fund sample comprising 1,619 training
observations, 286 validation observations, and 337 hold-out test observations.

Table 2: Predicted style and top-ranked bigrams by Equity Hedge and Macro strategy

Equity Hedge Macro
Discretionary Systematic Discretionary Systematic

zar fund liquid screen ow analysi programm fund
burden market algorithm model invest target opportun period
structur return europ eastern restrict respect trend number
broker research europ wace latin america indic period
cap bia model strategi basi sub-fund strategi system
economi compani comput algorithm exampl posit transact cost
issuer japan sector neutral secur repres day strategi
cycl industri combin index issu invest program term
bond govern select factor futur basi cta index
market russia equiti model strategi master appreci fund
relationship compani return number analysi currenc comput model
invest and/or methodolog fund invest idea posit model
sub-fund medium appreci tokyo bond incom swap agreement
state ci section topix asia pacif program varieti

This table presents the top-ranked bigrams (two consecutive words) extracted from strategy
descriptions for each predicted style within the Equity Hedge and Macro categories. Bigrams are
selected based on frequency after excluding globally common phrases (top 5%), and applying text
preprocessing steps including lowercasing, stopword and punctuation removal, Porter stemming,
and part-of-speech ltering to retain only nouns and proper nouns.
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Table 3: Summary statistics of excess return, Sharpe ratio, skewness, and kurtosis

Panel A: Excess Returns and Sharpe Ratios
Excess return Sharpe ratio

Count Mean STD 50% Mean STD 50%

Panel A.1: All Strategy
Discretionary 3,066 45.59% 68.16% 46.38% 13.63% 16.99% 13.09%
Systematic 1,968 44.95% 59.71% 40.47% 13.17% 17.75% 11.85%

Panel A.2: Main Strategy
Equity Hedge Discretionary 2,728 47.23% 69.17% 48.51% 13.95% 17.16% 13.42%

Systematic 1,177 44.20% 62.60% 40.39% 14.64% 20.02% 12.49%
Macro Discretionary 338 32.33% 57.78% 28.11% 11.06% 15.36% 10.35%

Systematic 791 46.06% 55.14% 41.55% 10.98% 13.39% 10.90%

Panel A.3: Sub-strategies of Equity Hedge
Equity Market Neutral Discretionary 202 25.27% 43.15% 20.04% 14.15% 21.59% 10.81%

Systematic 385 29.90% 42.02% 27.84% 17.65% 26.55% 13.37%
Fundamental Growth Discretionary 1,091 46.88% 77.47% 49.70% 12.43% 16.76% 12.03%

Systematic 203 56.06% 77.17% 49.41% 11.99% 14.18% 12.13%
Fundamental Value Discretionary 1,346 50.21% 64.99% 50.98% 15.29% 16.91% 14.68%

Systematic 418 49.84% 64.70% 49.55% 13.81% 15.95% 13.18%
Quantitative Directional Discretionary 89 56.38% 61.56% 52.33% 11.99% 12.25% 12.20%

Systematic 171 48.56% 71.07% 40.47% 13.03% 16.90% 10.99%

Panel B: Skewness and Kurtosis
Skewness Kurtosis

Count Mean STD 50% Mean STD 50%

Panel B.1: All Strategy
Discretionary 3,066 -14.61% 92.24% -16.41% 266.98% 449.86% 142.27%
Systematic 1,968 -7.08% 94.84% -2.68% 246.32% 529.33% 117.03%

Panel B.2: Main Strategy
Equity Hedge Discretionary 2,728 -16.49% 88.23% -17.81% 255.46% 392.66% 143.32%

Systematic 1,177 -22.31% 103.48% -21.57% 306.63% 634.17% 155.28%
Macro Discretionary 338 0.61% 118.86% 0.69% 359.89% 763.72% 136.61%

Systematic 791 15.58% 74.79% 15.25% 156.59% 292.37% 69.92%

Panel B.3: Sub-strategies of Equity Hedge
Equity Market Neutral Discretionary 202 -17.83% 90.80% -5.03% 277.88% 371.06% 144.67%

Systematic 385 -27.16% 94.20% -19.95% 273.92% 449.23% 117.07%
Fundamental Growth Discretionary 1,091 -18.60% 87.28% -18.89% 246.83% 398.46% 129.74%

Systematic 203 -20.35% 76.32% -28.55% 234.88% 281.54% 155.28%
Fundamental Value Discretionary 1,346 -14.34% 89.10% -17.59% 261.77% 396.09% 153.40%

Systematic 418 -21.29% 121.75% -16.54% 388.53% 920.29% 190.27%
Quantitative Directional Discretionary 89 -20.11% 80.94% -18.53% 215.11% 307.44% 111.07%

Systematic 171 -16.17% 103.24% -31.62% 265.21% 357.50% 140.26%
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Table 4: Factor alphas by predicted style within Equity Hedge and Macro strategy

Main Strategy Style Count Mean STD 25% 50% 75% Mean Di.

Panel A: Market model (F1)

Equity Hedge
Discretionary 2,728 13.79% 73.70% -12.11% 19.24% 48.08% 5.39%
Systematic 1,177 19.18% 62.96% -11.12% 19.16% 47.53%

Macro
Discretionary 338 18.35% 62.83% -6.40% 16.87% 50.06% 24.14%
Systematic 791 42.49% 59.93% 13.21% 41.50% 71.67%

Panel B: Fama-French three-factor model (F3)

Equity Hedge
Discretionary 2,728 9.62% 73.64% -15.40% 15.56% 43.28% 6.31%
Systematic 1,177 15.93% 64.10% -15.95% 15.92% 44.66%

Macro
Discretionary 338 15.77% 62.61% -9.40% 15.05% 48.00% 21.18%
Systematic 791 36.95% 63.08% 5.22% 34.44% 65.91%

Panel C: Fung-Hsieh Five-factor model (F5)

Equity Hedge
Discretionary 2,728 34.17% 77.43% 2.09% 35.63% 68.77% -0.86%
Systematic 1,177 33.31% 72.07% 0.18% 32.07% 65.95%

Macro
Discretionary 338 30.63% 66.58% 3.61% 24.08% 61.29% 31.48%
Systematic 791 62.11% 72.80% 24.95% 58.34% 94.65%

Panel D: Seven-factor model (F7)

Equity Hedge
Discretionary 2,728 8.24% 77.80% -20.41% 15.29% 45.52% 7.28%
Systematic 1,177 15.52% 68.54% -15.40% 15.82% 46.52%

Macro
Discretionary 338 10.20% 67.83% -13.13% 7.52% 42.87% 26.99%
Systematic 791 37.19% 69.46% 1.25% 33.57% 70.01%

Panel E: Eleven-factor model (F11)

Equity Hedge
Discretionary 2,728 11.35% 84.83% -20.50% 17.10% 51.09% 5.02%
Systematic 1,177 16.37% 76.27% -17.15% 17.40% 51.25%

Macro
Discretionary 338 13.86% 77.85% -18.95% 15.59% 49.17% 25.92%
Systematic 791 39.79% 80.08% -6.39% 39.39% 79.12%

This table reports factor alphas across predicted styles (Discretionary vs. Systematic) within the Equity
Hedge and Macro strategies, estimated under ve factor models. Mean Di refers to the mean dierence
between Discretionary and Systematic styles within each Main-strategy.
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Table 5: Factor alphas by predicted style within four sub-strategies of Equity Hedge

Sub Strategy Style Count Mean STD 25% 50% 75% Mean Di

Panel A: Market model (F1)

Equity Market Neutral
Discretionary 202 20.40% 49.64% -2.65% 14.61% 42.23% 2.85%
Systematic 385 23.25% 40.86% 0.17% 22.05% 46.84%

Fundamental Growth
Discretionary 1,091 1.99% 86.18% -25.40% 12.42% 44.40% 8.54%
Systematic 203 10.53% 79.30% -28.68% 12.00% 46.69%

Fundamental Value
Discretionary 1,346 22.50% 65.46% -2.65% 25.54% 51.72% -3.58%
Systematic 418 18.92% 64.91% -14.20% 19.08% 49.08%

Quantitative Directional
Discretionary 89 11.70% 47.01% -18.29% 8.30% 34.36% 9.20%
Systematic 171 20.90% 75.61% -11.68% 18.17% 46.13%

Panel B: Fama-French three-factor model (F3)

Equity Market Neutral
Discretionary 202 18.97% 48.31% -4.11% 12.13% 38.72% 2.47%
Systematic 385 21.44% 41.26% -4.07% 20.87% 45.27%

Fundamental Growth
Discretionary 1,091 -3.13% 86.33% -35.54% 9.73% 39.16% 9.08%
Systematic 203 5.95% 80.33% -31.78% 9.93% 43.42%

Fundamental Value
Discretionary 1,346 18.65% 65.06% -6.24% 21.11% 46.78% -4.16%
Systematic 418 14.49% 66.94% -21.15% 13.18% 41.03%

Quantitative Directional
Discretionary 89 7.94% 47.23% -20.52% 7.02% 29.43% 10.91%
Systematic 171 18.86% 75.62% -17.57% 14.92% 48.90%

Panel C: Fung-Hsieh Five-factor model (F5)

Equity Market Neutral
Discretionary 202 26.98% 46.50% 1.16% 20.73% 48.02% 2.94%
Systematic 385 29.92% 42.68% 4.81% 24.51% 53.53%

Fundamental Growth
Discretionary 1,091 30.10% 87.11% -2.61% 35.40% 71.10% 1.67%
Systematic 203 31.77% 81.15% -8.47% 34.92% 80.32%

Fundamental Value
Discretionary 1,346 38.50% 72.17% 8.04% 37.93% 70.08% -5.61%
Systematic 418 32.89% 75.47% -4.81% 36.08% 66.73%

Quantitative Directional
Discretionary 89 34.89% 81.45% -9.79% 29.96% 61.24% 8.92%
Systematic 171 43.81% 99.39% -0.50% 37.97% 82.77%

Panel D: Seven-factor model (F7)

Equity Market Neutral
Discretionary 202 18.68% 49.60% -3.18% 17.06% 39.00% 3.17%
Systematic 385 21.85% 43.13% -6.32% 21.43% 47.59%

Fundamental Growth
Discretionary 1,091 -5.17% 90.58% -38.56% 7.67% 41.94% 5.25%
Systematic 203 0.08% 83.07% -32.38% 1.45% 39.00%

Fundamental Value
Discretionary 1,346 17.87% 68.56% -11.54% 20.68% 49.06% -3.50%
Systematic 418 14.37% 70.46% -18.24% 14.49% 45.86%

Quantitative Directional
Discretionary 89 3.26% 67.39% -22.25% 4.40% 47.56% 19.12%
Systematic 171 22.38% 86.57% -9.76% 23.54% 48.82%

Panel E: Eleven-factor model (F11)

Equity Market Neutral
Discretionary 202 19.57% 54.78% -3.55% 17.18% 44.67% 2.54%
Systematic 385 22.10% 45.68% -3.37% 21.18% 47.74%

Fundamental Growth
Discretionary 1,091 -2.59% 99.00% -42.30% 7.17% 47.33% 1.20%
Systematic 203 -1.39% 98.99% -39.15% -2.32% 42.16%

Fundamental Value
Discretionary 1,346 21.67% 74.61% -9.16% 24.27% 53.63% -6.26%
Systematic 418 15.41% 73.15% -20.63% 14.33% 53.32%

Quantitative Directional
Discretionary 89 7.65% 73.73% -27.05% 5.29% 47.46% 19.24%
Systematic 171 26.89% 100.97% -11.86% 26.34% 61.45%

This table reports factor alphas across predicted styles (Discretionary vs. Systematic) within four sub-strategies
of Equity Hedge, estimated under ve dierent factor models. Mean Di refers to the mean dierence between
Discretionary and Systematic styles within each sub-strategy.
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Table 6: Proportion of signicant alphas by style across strategies and sub-strategies

Style F3 F5 F7 F11 F3+U4 F5+U2 U7

Panel A: All strategies

Discretionary 21.33% 14.12% 22.02% 19.57% 22.64% 23.39% 22.11%
Systematic 20.12% 14.43% 18.70% 17.28% 21.39% 20.93% 19.21%

Panel B: Main strategies

Equity Hedge
Discretionary 22.10% 14.44% 22.84% 20.16% 23.17% 24.05% 22.69%
Systematic 25.40% 17.59% 24.55% 22.94% 24.38% 25.66% 23.53%

Macro
Discretionary 15.09% 11.54% 15.38% 14.79% 18.34% 18.05% 17.46%
Systematic 12.26% 9.73% 9.99% 8.85% 16.94% 13.91% 12.77%

Panel C: Sub-strategies of Equity Hedge

Equity Market Neutral
Discretionary 23.76% 19.80% 26.73% 21.78% 23.27% 23.76% 26.73%
Systematic 28.83% 24.42% 29.87% 28.83% 27.53% 30.65% 28.05%

Fundamental Growth
Discretionary 16.87% 11.64% 18.52% 15.67% 19.25% 21.17% 19.43%
Systematic 16.75% 7.39% 13.79% 12.81% 15.76% 24.14% 17.73%

Fundamental Value
Discretionary 27.04% 16.57% 26.45% 24.22% 26.89% 26.82% 25.26%
Systematic 27.75% 17.46% 26.32% 24.64% 27.27% 23.92% 24.88%

Quantitative Directional
Discretionary 7.87% 4.49% 12.36% 10.11% 14.61% 17.98% 14.61%
Systematic 22.22% 14.62% 21.05% 17.54% 20.47% 20.47% 16.96%

This table reports the proportion of signicant positive alphas by predicted style across dierent strategy levels.
Panel A presents results for all strategies, Panel B reports by main strategy (Equity Hedge and Macro), and Panel
C focuses on sub-strategies within Equity Hedge. Signicant positive alphas are identied using the false discovery
rate (FDR) procedure of Giglio et al. (2021), controlling the FDR at the 5% level. Fs denotes an observable s-factor
model, where s = 3, 5, 7, or 11. Uk denotes an unobserved k-factor model. We also include hybrid models that
combine observable and unobservable components: F3+U4 and F5+U2, as well as a fully latent 7-factor model, U7.
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Appendix

A.I. FinBERT and ne-tuning procedures

Figure A.1 illustrates the architecture of the pre-trained FinBERT model, including the
classication head for two fund styles. The associated size for the learning parameters are also
displayed in the gure. To ne-tuning the model, We rst randomly sample 20 learning rates
from a logarithmic range between 1e-6 and 5e-5 to determine the optimal setting. We then
train the model using 10 training epochs, a batch size of 8, and a weight decay of 0.01. The grid
search and ne-tuning procedures closely follow the implementation guidelines provided by the
FinBERT1 and Hugging Face Transformers documentation.2 Codes are available upon request.

Figure A.2 visualizes the training process and performance evaluation. The upper panel
displays training and evaluation loss over epochs, while the lower panel plots validation metrics,
including accuracy, AUC, precision, and F1 score, across training epochs.

A.II. Machine leaning text classication comparison

We rst follow standard practice in textual analysis to process the text of strategy descrip-
tions. We exclude digital numbers, punctuation, symbols, and the stop-words (e.g., is, at, and,
the) in all documents that are of little value for classication. The remaining words are then
lemmatized, i.e., dierent forms of a word is converted to one single word, from which documents
are tokenized based on bigrams (two consecutive words). To ensure a bigram in Macro funds
(the training sample) is also relevant in Equity Hedge funds; we set the ratio of the percentage
of Equity Hedge funds with a particular bigram to the percentage of Macro funds with the same
bigram to be greater than or equal to 0.2.

We then construct the feature matrix of a given fund category as follows. For the token j
in the document i, its term frequency (tf) is:

tfij =
Number of times that token j appear in the document i

Total number of all tokens in the document i
, i = 1, . . . , N, j = 1, . . . ,M,

and every tf is weighted by the inverse-document frequency (idf):

idfj = log
Total number of documents

Number of the documents that contain token j
, j = 1, . . . ,M,

where N is the number of funds in a category (Macro funds or Equity Hedge funds), and M is
the number of tokens. Note that the larger the idf, the less frequently the token j is observed in
these documents; such token is considered more informative for classication and hence receives
more weight. The feature matrix is an N ×M matrix with the (i, j)-th element:

fij = tfij · idfj , i = 1, . . . , N, j = 1, . . . ,M.

In our study, the feature matrix of Macro funds is 2, 222 × 3, 494, and that of Equity Hedge
funds is 7, 158× 3, 494.

We dene the binary target variable as taking the value 1 if it is a Systematic Diversied
fund and 0 if it is a Discretionary Thematic fund and the training sample are the feature matrix
of Macro funds. The following statistical learning methods are employed: Linear regression,
logistic regression, linear discriminant analysis (LDA), k-nearest neighbor (KNN), support vec-
tor machine (SVN) with the Gaussian kernel, classication tree, bagging, gradient boosting, as
well as random forests. Our training approach utilizes text mining and statistical learning and

1https://github.com/yya518/FinBERT/blob/master/finetune.ipynb
2https://huggingface.co/docs/transformers/en/hpo_train
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hence avoids subjectivity to a large extent. Moreover, the use of bigrams for tokenization also
alleviates the problem of misinterpreting single words.

We select the trained classier with the best classication performance. To this end, we
consider four performance measures: Accuracy, area under the receiver operating characteristic
curve (AUC), precision, and F1 score. We evaluate the performance of classiers using the
nested 10-fold cross-validation. This cross-validation involves two layers: the inner 10-fold
cross-validation determines the best hyper-parameters for each learning method, and the outer
10-fold cross-validation evaluates the classication ability of dierent classiers with the best
hyper-parameters. In our study, we split Macro funds into two sub-samples, one with 85%
(1,888) funds and the other with 15% (334) funds, by the stratied sampling on the strata of
the Systematic Diversied dummy. The nested 10-fold cross-validation is then applied to the
sub-sample of 85% Macro funds to search for the best classier; the remaining 15% of Macro
funds is reserved for out-of-sample evaluation of the best classier.

Table A.1 contains four panels, where each panel summarizes the performance results of all
learning methods under a particular measure. We report the summary statistics (median, mean,
maximum, minimum, and standard deviation) based on the outer 10-fold samples. It can be seen
that random forest dominates other classiers for all measures in terms of these statistics, with
gradient boosting as the second-best classier. On the other hand, linear regression, logistic
regression, and LDA perform pretty poorly. For example, the mean of accuracy is 0.86 for
random forest and 0.84 for gradient boosting. On the other hand, linear regression, logistic
regression, and LDA have respective means of 0.70, 0.70, and 0.68. Applying the selected
random forest with the best hyper-parameters to the 15% validation sample, the resulting out-
of-sample accuracy, AUC, precision, and F1 score are, respectively, 0.89, 0.87, 0.90, and 0.92,
which are all greater than the corresponding medians and means in Table A.1.

A.III. False-discovery adjusted procedures

This appendix follows the Algorithm 6 and 7 in Giglio et al. (2021).

A.III.1. Estimate alpha under the unbalanced panel and observable and unobservable mixture
factor models

Assume the general factor model with S observable factors and K unobservable factors:

E(ri) = αi + β′
i,oλo + β′

i,uλu, i = 1, · · · , N,

where βi,o and βi,u are S × 1 and K × 1 risk exposure to the observable and unobservable risk
factors. λo and λu are the risk premium of the asset for bearing observable and unobservable
risks respectively. Assume that the excess return of fund i at time t is ri,t, i = 1, · · · , N ; and
t ∈ Ti, which is the time indices set which of fund i has excess return. Nt is the fund’s indices
set which includes the existing funds at time t.

Step 1. Time series regression. For each fund, estimate the time-series regression of excess return
on the observable risk factors with the same range to obtain the observable risk exposure
β̂i,o and residual ei,t for t ∈ Ti. Let EN×T be the residual matrix (with missing values).

Step 2. Matrix completion of the residual matrix. Suppose E = M +U , where M is a N × T low
rank matrix, and U is the noise. Let Ω indicate the existing status of the matrix E, i.e.,
ωi,t = 1 if ei,t is observed, and 0 if missing. The projection matrix, PΩ(E) imputes zeros
on the missing entries of matrix E as

[
PΩ(E)

]
i,t

=


ei,t, if ωi,t = 1;

0, otherwise.
(C.1)
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We want to nd a low-rank matrix, M , such that minimizes the

min
M∈RN×T

∥∥(E −M) ◦ Ω
∥∥2
F
+ c‖M‖∗ ,

where ◦ is the element-wise product of matrices; c is the tuning parameter; ‖M‖F is the
Frobenius norm. ‖M‖2F :=


i


t mi,t2; and ‖M‖∗ is the nuclear norm. ‖M‖∗ :=minN,T

j=1 σj(M), where σ1(M) ≥ σ2(M) ≥ · · · are the ordered singular values of M .

The iterative approach to obtain estimates of M , M̂ , see Hastie et al. (2015) and Giglio
et al. (2021).

Step 3. Unobservable factors and exposure estimate. Apply singular value decomposition on the
matrix M̂ , and dene the unobservable K × 1 factors and their exposures as:

f̂u,t =


∑

i∈Nt

uiu
′
i




−1
∑

i∈Nt

uiei,t, t = 1, · · · , T,

β̂u,i =


∑

t∈Ti
f̂u,tf̂

′
u,t




−1
∑

t∈Ti
f̂u,tei,t, i = 1, · · · , N,

where u1, · · · , uK is the top K left singular-vector of M̂ . Dene all risk exposures as

β̂ := (β̂o, β̂u) and all observable and unobservable risk factor as f̂t :=

fo,t − f̄o, f̂

′
u,t

′
,

where fo,t is the observable S × 1 risk factors for t = 1, · · · , T, and f̄o =
1
T

T
t=1 fo,t.

Step 4. Estimate risk premium. Run a cross-section regression of r̄i on β̂ to obtain the slope λ̂ as
the risk premium.

Step 5. De-biased alpha estimates.

α̂i = r̄i − β̂
′
iλ̂+ Âi.

where Âi is the (de-)biased term for the unbalanced data, see Giglio et al. (2021).

Step 6. Construct the t-statistics and its p-values. The t-statistics is the standard asymptotic
normal for one-side test.

ti =
α̂i

se(α̂i)
, pi = 1− Φ(ti), i = 1, · · · , N,

Φ(·) is the standard normal CDF, and se(α̂i) = 1
Ti

√


t∈Ti ̂
2
i,t


1− f̂ ′

tΣ̂
−1
f λ̂

2
, where

̂i,t = ri,t − r̄i − β̂
′
if̂t, Σ̂f = 1

T

T
t=1 f̂tf̂

′
t .

A.III.2. Alpha-screening Benjamini and Hochberg (1995) FDR control

It is well known that simultaneously testing multiple hypotheses is easy to suer from the
false discovery problem. Suppose ti is a test statistics to examine H0,i in equation (??). A null
hypothesis is rejected when ti > ci for a threshold ci. Let H0 is the set of indices of the true
null hypotheses, R is the set of indices of the rejected hypotheses, and F is the indices of false
rejected hypotheses, i.e.,

R =
⋃

1≤i≤N

i : ti > ci ;

F =
⋃

1≤i≤N

i : ti > ci andαi ≤ 0 .

3



The false discovery proportion is dened as the number of falsely rejected hypotheses to the
total number of rejections. As the number of false rejection is unobservable, the false discovery
rate (FDR) is then dened as the expectation of false discovery proportion, i.e.,

FDR := E

( F 
R

)
.

where A denotes the number of elements in the set A. If the number of rejections is zero, then
FDR is dened as zero. Benjamini and Hochberg (1995) proposed the following procedures to
control the FDR under q level. Let

p(1) ≤ · · · ≤ p(N)

be the ordered p-values corresponding to the null hypotheses H0,(1), · · · , H0,(N). Rejects the
hypotheses H0,(1), · · · , H0,(j∗), where j∗ is the number such that

j∗ := max
1≤j≤N

{
j : p(j) ≤ γj

}
.

where γj := j
N q be the rejection criteria. Giglio et al. (2021) suggest modify the method of

Benjamini and Hochberg (1995) by precluding the extremely negative alpha funds in advance (in
fact fund’s t statistics). Dene the reduced set of funds indices as

Ñ :=
⋃

1≤i≤N

{
i : ti > − log(log(T ))


logN

}

and the rejection criteria γj is therefore change to j

Ñ q. They show by theoretic inference and

Monte Carlo simulation that this alpha screen procedure improves test power while remaining
controlling for the FDR under q level.
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Figure A.1: Architecture of the ne-tuned BERT to binary classication model.
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(a) Training and validation loss by epoch

(b) Prediction performance on the validation sample by epoch

Figure A.2: Training progress and validation performance across epochs
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Table A.1: Classication performances measures of nested 10-fold cross validation

Linear Logit LDA KNN SVM RF Tree GB
Panel A: Accuracy
Median 0.70 0.70 0.68 0.80 0.84 0.86 0.76 0.84
Mean 0.70 0.70 0.68 0.81 0.84 0.86 0.77 0.84
Max 0.77 0.75 0.76 0.87 0.86 0.90 0.80 0.88
Min 0.65 0.65 0.65 0.79 0.80 0.82 0.73 0.81
STD 0.04 0.03 0.03 0.02 0.02 0.02 0.03 0.02
Panel B: AUC
Median 0.70 0.70 0.66 0.73 0.80 0.82 0.73 0.81
Mean 0.70 0.70 0.66 0.74 0.80 0.82 0.74 0.80
Max 0.78 0.75 0.74 0.81 0.84 0.88 0.80 0.84
Min 0.65 0.65 0.61 0.72 0.75 0.79 0.70 0.74
STD 0.04 0.03 0.04 0.03 0.03 0.02 0.03 0.03
Panel C: Precision
Median 0.82 0.82 0.77 0.79 0.85 0.86 0.81 0.84
Mean 0.82 0.82 0.77 0.79 0.85 0.86 0.82 0.85
Max 0.89 0.86 0.84 0.84 0.88 0.91 0.86 0.89
Min 0.78 0.76 0.73 0.77 0.79 0.82 0.80 0.82
STD 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.03
Panel D: F1 Score
Median 0.75 0.75 0.75 0.87 0.88 0.90 0.82 0.88
Mean 0.75 0.75 0.75 0.87 0.88 0.90 0.83 0.88
Max 0.82 0.80 0.81 0.91 0.90 0.93 0.85 0.91
Min 0.70 0.71 0.71 0.86 0.86 0.87 0.79 0.86
STD 0.04 0.03 0.03 0.01 0.01 0.02 0.02 0.01

This table reports the classication performance measures: Median, Mean,
Max, Min, and SD, which are the median, average, maximum, minimum,
and standard deviation of the outer 10-folds measures. Statistical learning
methods include the following. Linear: linear regression; Logit: logistic
regression; LDA: linear discrimination analysis; KNN: k-nearest neighbor
approach; SVM: support vector machine with the Gaussian kernel; RF:
random forest; Tree: classication tree; GB: gradient boosting.
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